If it's not what You are looking for type in the equation solver your own equation and let us solve it.
j^2+44j=0
a = 1; b = 44; c = 0;
Δ = b2-4ac
Δ = 442-4·1·0
Δ = 1936
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1936}=44$$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(44)-44}{2*1}=\frac{-88}{2} =-44 $$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(44)+44}{2*1}=\frac{0}{2} =0 $
| 18n^2-20n+30=7n-15n^2-24 | | 5x-1(14-x)=-30-2× | | 3/4x=-33 | | 144y^2-64=0 | | 3=0.005/x | | 41p^2-19p=0 | | F(×)=10x-3 | | 2=5l | | 9(×-2)=-6(4-x)+18 | | 3p-5=4/9 | | 6b=5b+2 | | 8n+50=589 | | y=1400(1+.09) | | -4t^2+8t=32 | | -4t^2+8t=-32 | | 2(x-4)/3=8 | | (x–8)+(8x+4)=8x–(2–x) | | 3*6y-y=62 | | 3*6y-5=6y | | -10+2=x-4 | | 3*6y-5=62 | | -10x+4(x+2)=68 | | a/24=2.7 | | 6-4x+x=39 | | 8(5+4x)+11=-5(3-7x | | x-16+1/3x+8+2x-112=180 | | 4x-18(3)=50 | | 5y-3=10y-4 | | -1.3=-1.6d | | (5x-7)2=8 | | -5x-6=30 | | -3/4=-1.6d |